

POSTER

Optimizing Photoresist Coating Processes with Computational Fluid Dynamics and Taguchi Design of Experiments

Chaoyi Zheng¹, Liejie Huang¹, Jiafei Yang⁴, Dawei Gao¹, Haiwen Ge², Guodong Zhou^{1,3}

College of Integrated Circuits, Zhejiang University

Zhejiang Laboratory

³ ZJU-Hang zhou Global Scientific and Technological Innovation Center, Zhejiang University ⁴ Zhejiang ICsprout Semiconductor Co., Ltd

INTRODUCTION

- The uniformity of photoresist film thickness is crucial in microelectronics manufacturing.
- Traditional models predict only the average photoresist thickness, limiting effectiveness.
- An OpenFOAM-based model was developed to simulate photoresist distribution on the rotating wafer and the Taguchi method was used to optimize the process.

METHODOLOGY

Two-dimensional simulations are considered by employing a fan-shaped with minimal angle mes h.

The photoresist is ejected from the nossle and strikes the disc rotating around the axis vertically.

Expt.	Experiment Parameters			
	First Spin Speed (rpm)	Accelera tion (rpm/sec)	Dispensing Time (sec)	Second Spin Speed (rpm)
1	750	5000	1.5	2000
2	500	1000	1.5	1500
3	750	1000	2	2500
4	750	2500	2.5	1500
5	1000	1000	2.5	2000
6	500	5000	2.5	2500
7	500	2500	2	2000
8	1000	2500	1.5	2500
9	1000	5000	2	1500

A set of optimization experiments were designed based on Taguchi's DOE.

RESULTS & DISCUSSION

Surface topography data of the photoresist film extracted from the simulation program.

The optimized results obtained from the statistical analysis of the film thickness data.

SUMMARY

- The relationship between process parameters and the uniformity of photoresist film thickness was investigated using computational fluid dynamics.
- Employed the Taguchi experimental design techniques to optimize the coating process.
- The findings can provide valuable guidance for the optimization of photoresist coating process formulas.