Enabling New Horizons

Sustainable, Cost-Efficient Semiconductor Facilities Design Trends

Hartmut Schneider (VP Technology)

Green High-Tech Facility Forum SEMICON China, 2017

M+W Group at a Glance

- Leading global engineering and construction company
- Unique skillset in the delivery of complex technology-intensive factories and facilities
- Special expertise in cleanroom technology and controlled environments
- Established in Germany in 1912
- Figures 2015

Order Intake:€ 3 bnSales:€ 3 bnEmployees:6,000

Mission Statement

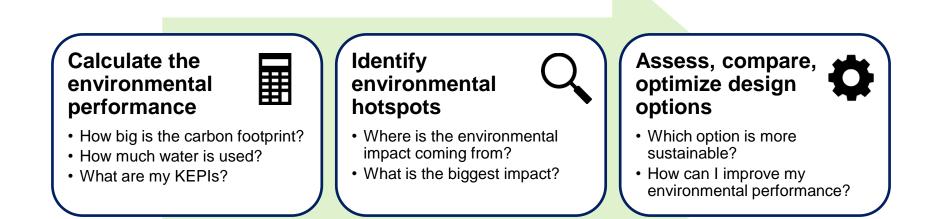
"M+W creates customer value through a unique combination of lean and sustainable, high-technology engineering and project management solutions in an injury-free environment."

Challenges in a Changing Industry... And More Sustainability

- The trend of "Nanoelectronics Everywhere" has created new high volume semiconductor consumer markets which drive:
 - Diversification of process technologies & applications
 - Flexible manufacturing
 - Corporate social responsibilities
 - Environmental-friendly green products
- The protection of the environment and natural resources is of highest priority for China
 - China has signed the Paris Agreement within the United Nations Framework Convention on Climate Change (UNFCCC) in 2015
 - China is the largest investor in green energy globally
 - New environmental protection law established in 2015

Source: US National Robotics Initiative

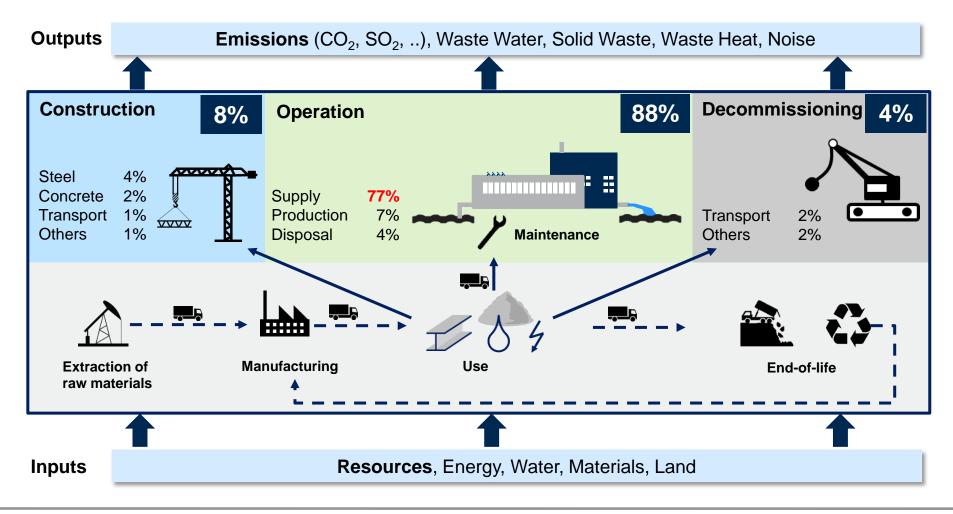
Source: SINA Corporation


Challenge: Sustainability while maintaining cost-efficiency.

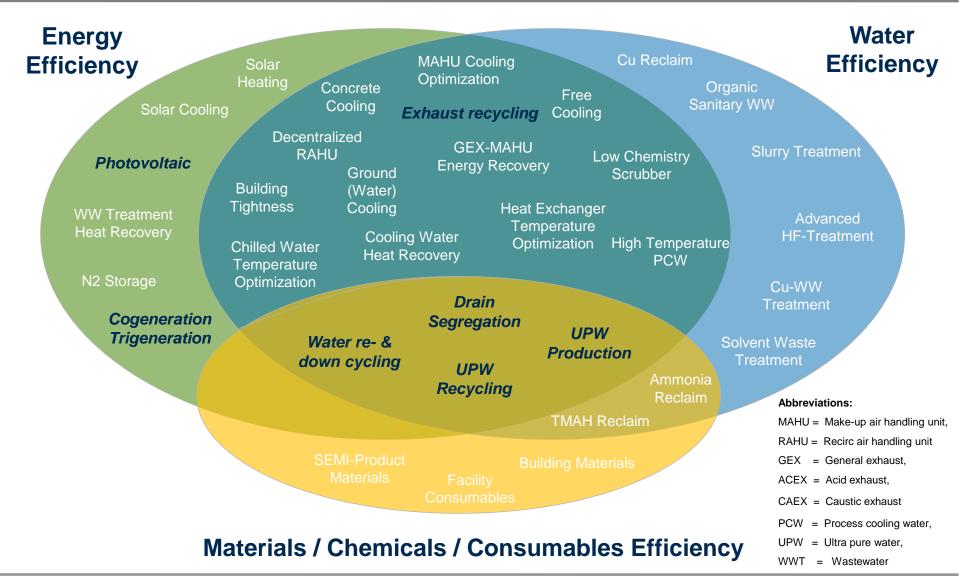
Evaluation of Waste Reduction Measures Life Cycle Assessment (LCA) Modeling

LCA is a systematic technique for the evaluation of (potential) **environmental impacts** associated with products, processes or services over their **entire** life cycle.

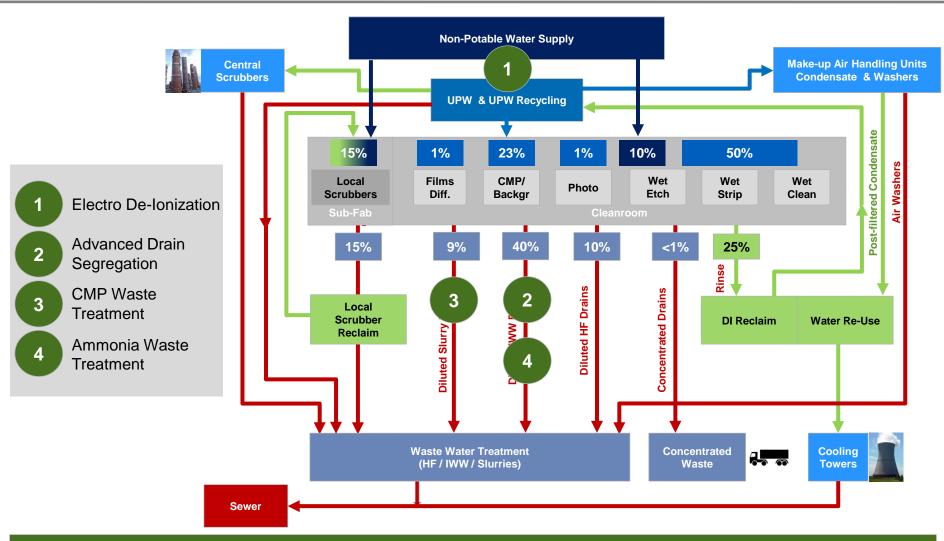
Defined in ISO 14040 and ISO 14044



LCA enables one to make environmentally sound decisions.

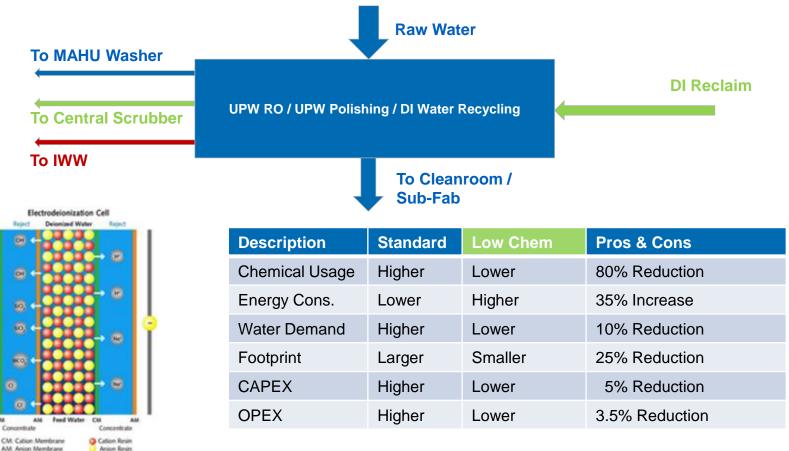

Life Cycle Assessment (LCA) Modeling Operation Phase Dominates CO2 Footprint

Calculated Relative Contribution to Wafer Fab Life Cycle CO2 Footprint



Integrated Waste Reduction for Facility Systems General Overview & Examples

High Leverage Waste Reduction Measures UPW and Waste Water Systems



Additional measures can substantially improve overall site water recycling ratios from 50% to >75%.

Low-Chem UPW Make-Up Electro De-Ionization

- M+W GROUP
- Comparison based on installed systems for a major semiconductor facility, similar raw water inlet quality and UPW specifications

Source: M+W Group. Actual comparison for a semiconductor facility based on same raw water inlet quality and UPW specifications

March 2017

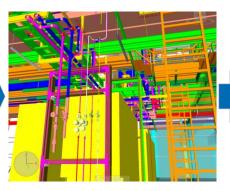
Source: Waterworld, April 2016

Process Exhaust Waste Reduction Opportunities

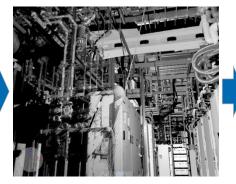
Opportunity	Description	Status	Potential Waste Red.	Considerations
Heat exhaust recycling	Non-toxic exhaust discharged into recirculation airstream	In Operation	Medium	Non-hazardous exhaust only. CAPEX saving potential (MAHU, chillers, boilers etc.)
PFC recycling	Etch/CVD chamber cleaning gases	Prototype	High	Reduced global warming gases. High purification requirements.
Dynamic Exhaust Volume Control	Multiple actuated dampers at process tools	Concept	Medium	Increased CAPEX for dampers & FMCS system
Scrubber heat recovery	Pre-cooling of MAHU air (~16°C => 1 MW)	Concept	Medium	Regional dependent. Reduced chiller capacity, plus heat recovery system CAPEX
EXVO heat recovery	Approx. 200°C available for pre- heating hot water (~0.4MW)	Prototype	Low	Reduced boiler capacity, plus heat recovery system CAPEX
Reclaimed Scrubber Chemicals	Process waste water containing H2SO4 and NaOH	Concept	Low	Low potential waste streams and additional segregation
Solvent waste reuse	Fuel for EXVO (solvent exhaust treatment) or boilers	Other industries	Low	Low concentrated solvent waste discharge volumes.

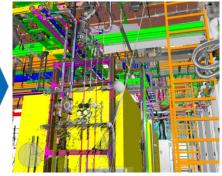
Example:	GEX-Recycling	290,000 m ³ /h (30% of total GEX)
Heat Exhaust Recycling	Electrical Power Saving	1,970 MWh/a
	Natural Gas Savings	284,000 m³/a
	CO2 Emission Savings	1,500 t/a
	Operation Cost Savings	300,000 €/a
	Chiller & Cooling Tower Capacity Savings	3,000 kW

Waste Reduction during Construction Pre-Assembly and Modularization


Traditional Stick Build Construction -> Design for Manufacturing/Assembly

Benefits


- Reduced materials, space and resources wasted on site (safety)
- High labor productivity through efficiency & less interface management
- Continuous manufacturing with less set-ups
- Established pre-qualification testing off-site
- Electronic records of as-builts
- Fast ramp-up of installation phase


Scan of actual sub fab area

BIM Model development

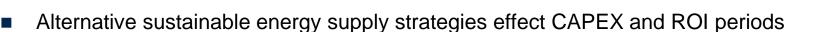
Scan of actual sub fab area

Overlay of scan with model

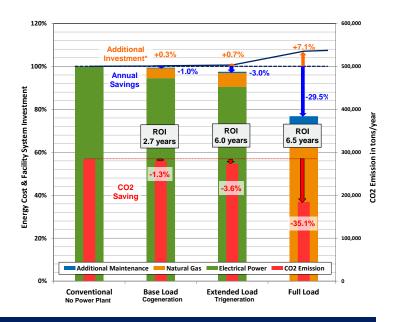
Pre-Requisites

- Collaborative & experienced supply chain
- Early contractor engagement
- Detailed engineering and BIM/4D platform implementation

Sustainable Energy Supply Options Renewable Energy


- Renewable energy sources are site-dependent
- 100% renewable energy supply to a fab is unlikely
 - Space requirements
 - Remote locations inevitable
 - Energy storage required for high quality power supply

Potential CO2 reduction in case of 100% utilization of renewable energies is approx. 540,000 t/a*


* Assumes CO2 emission of 0.578 kg/kWh elec. For a 25k m² Fab with power demand of \sim 420 GWh/a

Sustainable Energy Supply Options Cogeneration & Trigeneration Plant Scenarios

Scenario	Туре	Scope
Base Load	Cogeneration	Provision of base load of hot water (summer) & corresponding electrical power capacity
Extended Load	Trigeneration	Provision of higher load of hot & chilled water & corresponding electrical power capacity Winter: Hot Water (up to 100%) Summer: Base Load of Hot Water & Share of Chilled Water
Full Load	Trigeneration	Provision of full load of electrical power & hot and chilled water Winter: 100% Hot Water & Share of Chilled Water Summer: Base Load of Hot Water & 100% Chilled Water

Example: 25k m² Wafer Fab in Asia, Electrical Power 80 €/MWh, Natural Gas 25 €/MWh(LHV)

M+W GROUP

Integrated Waste Reduction Summary

- An Integrated Waste Reduction Program considers multiple interactions and dependencies by utilizing LCA methods
- Waste reduction focuses on fab operations
 - New water treatment technologies and advanced drain segregation can improve a site's overall reclaim ratio >75%
 - A reduction in process exhaust treatment volumes has a significant leverage on fab power and water demand.
- Improvements during fab construction include modular or pre-assembled building & facility systems or elements.
- Alternative energy supply concepts can further reduce energy demand and the CO₂ footprint of the wafer fab.
 - Tri-generation requires acceptance of ROI periods > 6 years, pending power to gas price ratio

Resource efficiency and waste reduction have become major considerations for wafer fab design / operation.

THANK YOU

Hartmut Schneider Phone: +49 711 8804-1431 Mail: hartmut.schneider@mwgroup.net M+W Group Lotterbergstraße 30 70499 Stuttgart, Germany

www.mwgroup.net